Universality in two-dimensional Kardar-Parisi-Zhang growth
نویسندگان
چکیده
منابع مشابه
Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model.
Extended dynamical simulations have been performed on a (2+1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2+1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understandi...
متن کاملExtremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2+1 Kardar-Parisi-Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D) radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise ...
متن کاملAgeing of the 2+1 dimensional Kardar-Parisi-Zhang model
Extended dynamical simulations have been performed on a 2+1 dimensional driven dimer lattice gas model to estimate ageing properties. The auto-correlation and the auto-response functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the 2+1 dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understandin...
متن کاملRecent developments on the Kardar-Parisi-Zhang surface-growth equation.
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model...
متن کاملSlow crossover to Kardar-Parisi-Zhang scaling.
The Kardar-Parisi-Zhang (KPZ) equation is accepted as a generic description of interfacial growth. In several recent studies, however, values of the roughness exponent alpha have been reported that are significantly less than that associated with the KPZ equation. A feature common to these studies is the presence of holes (bubbles and overhangs) in the bulk and an interface that is smeared out....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2004
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.69.021610