Universality in two-dimensional Kardar-Parisi-Zhang growth

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model.

Extended dynamical simulations have been performed on a (2+1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2+1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understandi...

متن کامل

Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.

Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2+1 Kardar-Parisi-Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D) radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise ...

متن کامل

Ageing of the 2+1 dimensional Kardar-Parisi-Zhang model

Extended dynamical simulations have been performed on a 2+1 dimensional driven dimer lattice gas model to estimate ageing properties. The auto-correlation and the auto-response functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the 2+1 dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understandin...

متن کامل

Recent developments on the Kardar-Parisi-Zhang surface-growth equation.

The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model...

متن کامل

Slow crossover to Kardar-Parisi-Zhang scaling.

The Kardar-Parisi-Zhang (KPZ) equation is accepted as a generic description of interfacial growth. In several recent studies, however, values of the roughness exponent alpha have been reported that are significantly less than that associated with the KPZ equation. A feature common to these studies is the presence of holes (bubbles and overhangs) in the bulk and an interface that is smeared out....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2004

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.69.021610